Problem 1.14

Two points

Consider two points located at \mathbf{r}_{1} and \mathbf{r}_{2}, and separated by distance $r=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$. Find a time-dependent vector $\mathbf{A}(t)$ from the origin that is at \mathbf{r}_{1} at time t_{1} and at \mathbf{r}_{2} at time $t_{2}=t_{1}+T$. Assume that $\mathbf{A}(t)$ moves uniformly along the straight line between the two points.

Solution

If $\mathbf{A}(t)$ moves uniformly along the straight line between \mathbf{r}_{1} and \mathbf{r}_{2}, then $\mathbf{A}(t)$ must have a constant rate of change.

$$
\mathbf{A}^{\prime}(t)=\mathbf{C}
$$

Integrate both sides with respect to t.

$$
\mathbf{A}(t)=\mathbf{C} t+\mathbf{D}
$$

Apply the two conditions, $\mathbf{A}\left(t_{1}\right)=\mathbf{r}_{1}$ and $\mathbf{A}\left(t_{2}\right)=\mathbf{r}_{2}$, to obtain two vector equations that can be solved for \mathbf{C} and \mathbf{D}.

$$
\begin{align*}
\mathbf{A}\left(t_{1}\right) & =\mathbf{C} t_{1}+\mathbf{D} \tag{1}
\end{align*}=\mathbf{r}_{1},
$$

Subtract both sides of equation (1) from those of equation (2).

$$
\mathbf{C} t_{2}-\mathbf{C} t_{1}=\mathbf{r}_{2}-\mathbf{r}_{1}
$$

Solve this equation for \mathbf{C}.

$$
\mathbf{C}=\frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{t_{2}-t_{1}}
$$

Now solve equation (1) for \mathbf{D}.

$$
\begin{aligned}
\mathbf{D} & =\mathbf{r}_{1}-\mathbf{C} t_{1} \\
& =\mathbf{r}_{1}-\frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{t_{2}-t_{1}} t_{1} \\
& =\frac{\mathbf{r}_{1}\left(t_{2}-t_{1}\right)-\left(\mathbf{r}_{2}-\mathbf{r}_{1}\right) t_{1}}{t_{2}-t_{1}} \\
& =\frac{\mathbf{r}_{1} t_{2}-\mathbf{r}_{2} t_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

Now that \mathbf{C} and \mathbf{D} are known, $\mathbf{A}(t)$ is as well.

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathbf{r}_{2}-\mathbf{r}_{1}}{t_{2}-t_{1}} t+\frac{\mathbf{r}_{1} t_{2}-\mathbf{r}_{2} t_{1}}{t_{2}-t_{1}} \\
& =\frac{\mathbf{r}_{1} t_{2}-\mathbf{r}_{1} t+\mathbf{r}_{2} t-\mathbf{r}_{2} t_{1}}{t_{2}-t_{1}}
\end{aligned}
$$

Therefore,

$$
\mathbf{A}(t)=\frac{t_{2}-t}{t_{2}-t_{1}} \mathbf{r}_{1}+\frac{t-t_{1}}{t_{2}-t_{1}} \mathbf{r}_{2}
$$

