Problem 1.14

Two points

Consider two points located at \mathbf{r}_1 and \mathbf{r}_2 , and separated by distance $r = |\mathbf{r}_1 - \mathbf{r}_2|$. Find a time-dependent vector $\mathbf{A}(t)$ from the origin that is at \mathbf{r}_1 at time t_1 and at \mathbf{r}_2 at time $t_2 = t_1 + T$. Assume that $\mathbf{A}(t)$ moves uniformly along the straight line between the two points.

Solution

If $\mathbf{A}(t)$ moves uniformly along the straight line between \mathbf{r}_1 and \mathbf{r}_2 , then $\mathbf{A}(t)$ must have a constant rate of change.

$$\mathbf{A}'(t) = \mathbf{C}$$

Integrate both sides with respect to t.

$$\mathbf{A}(t) = \mathbf{C}t + \mathbf{D}$$

Apply the two conditions, $\mathbf{A}(t_1) = \mathbf{r}_1$ and $\mathbf{A}(t_2) = \mathbf{r}_2$, to obtain two vector equations that can be solved for **C** and **D**.

$$\mathbf{A}(t_1) = \mathbf{C}t_1 + \mathbf{D} = \mathbf{r}_1 \tag{1}$$

$$\mathbf{A}(t_2) = \mathbf{C}t_2 + \mathbf{D} = \mathbf{r}_2 \tag{2}$$

Subtract both sides of equation (1) from those of equation (2).

$$\mathbf{C}t_2 - \mathbf{C}t_1 = \mathbf{r}_2 - \mathbf{r}_1$$

Solve this equation for **C**.

$$\mathbf{C} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1}$$

Now solve equation (1) for **D**.

$$D = \mathbf{r}_{1} - Ct_{1}$$

= $\mathbf{r}_{1} - \frac{\mathbf{r}_{2} - \mathbf{r}_{1}}{t_{2} - t_{1}}t_{1}$
= $\frac{\mathbf{r}_{1}(t_{2} - t_{1}) - (\mathbf{r}_{2} - \mathbf{r}_{1})t_{1}}{t_{2} - t_{1}}$
= $\frac{\mathbf{r}_{1}t_{2} - \mathbf{r}_{2}t_{1}}{t_{2} - t_{1}}$

Now that **C** and **D** are known, $\mathbf{A}(t)$ is as well.

$$\mathbf{A}(t) = \frac{\mathbf{r}_2 - \mathbf{r}_1}{t_2 - t_1} t + \frac{\mathbf{r}_1 t_2 - \mathbf{r}_2 t_1}{t_2 - t_1}$$
$$= \frac{\mathbf{r}_1 t_2 - \mathbf{r}_1 t + \mathbf{r}_2 t - \mathbf{r}_2 t_1}{t_2 - t_1}$$

Therefore,

$$\mathbf{A}(t) = \frac{t_2 - t}{t_2 - t_1} \mathbf{r}_1 + \frac{t - t_1}{t_2 - t_1} \mathbf{r}_2.$$

www.stemjock.com